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Abstract
We introduce a general class of statistical-mechanics models, taking values in
an Abelian group, which includes examples of both spin and gauge models, both
ordered and disordered. The model is described by a set of ‘variables’ and a set
of ‘interactions’. Each interaction is associated with a linear combination of
variables; these are summarized in a matrix J . A Gibbs factor is associated with
each variable (one-body term) and with each interaction. Then we introduce
a duality transformation for systems in this class. The duality exchanges the
Abelian group with its dual, the Gibbs factors with their Fourier transforms
and the interactions with the variables. High (low) couplings in the interaction
terms are mapped into low (high) couplings in the one-body terms. If the matrix
J is interpreted as a vector representation of a matroid, duality exchanges the
matroid with its dual. We discuss some physical examples. The main idea is
to generalize the known models up to eventually include randomness into the
pattern of interaction. We introduce and study a random Gaussian model, a
random Potts-like model and a random variant of discrete scalar QED. Although
the classical procedure as given by Kramers and Wannier does not extend in
a natural way to such a wider class of systems, our weaker procedure applies
to these models, too. We shortly describe the consequence of duality for each
example.

PACS numbers: 05.50.+q, 64.60.Cn, 75.10.−b

1. Introduction of the problem

In statistical mechanics a notion of duality appeared first as a relation between the high- and
low-temperature expansions in the two-dimensional Ising model [1, 2]. In both expansions
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the partition function can be expressed as a sum on a gas of closed polymers; in the low-
temperature picture, these polymers are the boundaries of the ferromagnetic domains, so
we have an expansion in the deviations from the ordered regime. In contrast, in the high-
temperature picture the polymers are the terms of a Fourier expansion which expresses the
deviation from a disordered regime of total decorrelation. So, in a certain sense, the duality
relates energetic degrees of freedom to entropic degrees of freedom. Moreover, under the
assumption of the existence of only one critical value for the temperature, it was possible to
locate the phase-transition point before the exact solution of the model given by Onsager.

It was, afterwards, realized [3–8] that similar constructions hold for models with Abelian-
group-valued variables.

More formally, a duality transformation can be defined directly on the partition function
of the model by means of two independent duality transformations, that is:

• The variables are located on the k-cells of a D-dimensional cell-complex (e.g. the 0-cells,
or sites, for a spin model, the 1-cells, or bonds, for a gauge model), more precisely the
physical state is a k-cochain taking values in an Abelian group. The interactions are
located on the (k + 1)-cells (respectively the bonds and the plaquettes in the previous
examples). The ‘algebraic’ duality exchanges variables and interactions, and the dual
physical state is a (k + 1)-chain taking values in the original group.

• The new variables have a gauge redundancy, and must obey a set of constraints. In other
words, they must be a closed (k + 1)-chain. The solution of the constraints leads to the
‘integration’ of the (k + 1)-chain to a (k + 2)-chain. After this, the cell-complex on which
the model is defined is transformed into its dual counterpart. This ‘geometrical’ duality
of cellular complexes pictorially exchanges n-cells with (D − n)-cells, and the physical
state is now a (D − k − 2)-cochain.

This general strategy is explained in detail, for example, in [9, 10].
These two independent transformations can also be performed in reverse order. First we

have to change variables from the original set, located on the k-cells, to a new set of redundant
‘gauge’ variables, located on (k + 1)-cells. We can reinterpret the original interaction terms
as one-body terms, although a set of constraints located on (k + 2)-cells appears. Now the
‘geometrical’ duality translates n-cells on the original lattice into (D − n)-cells in the dual
lattice, and the physical state becomes a (D − k − 1)-chain, while the constraints, treated as
delta-function interactions, are located on (D − k − 2) cells. Then, the ‘algebraic’ duality
exchanges variables and interactions, so the dual physical state is a (D − k − 2)-cochain, and
variables on each (D − k − 2)-cell take the value of the dual of the original group.

This alternative approach [7] has the advantage of requiring a derivative of a differential
form instead of a more difficult integration. Although applied mainly to models on regular
lattices, this approach only requires the lattice to be of a cell complex of definite dimension D.
For example, in the case of planar graphs, a duality relation can be stated for arbitrary graphs
and generic patterns of interaction, for example, also in the presence of frustration [11].

This construction on the partition function has direct implications also for the expectation
values of physical operators (e.g. correlation functions). For example, by considering
modifications of the Hamiltonian, in [12] a ‘disorder’ operator µ(x∗) is identified for the
2D-Ising model, which, at zero magnetic field, has a dual role w.r.t. the spin operator σ(x).
Note that, according to the geometric procedure above, the operator µ is located on lattice
plaquettes.

In this paper we wish to clarify the ‘algebraic’ part of the duality transformation, by
putting it in a still more general context. We consider a rather general class of statistical-
mechanical models in which the variables take values in an Abelian group; each interaction



General duality for Abelian-group-valued statistical-mechanics models 7409

term is associated with a particular linear combination of variables, but need not arise from
any particular geometrical entity (such as a bond or a plaquette). By relaxing the requirement
for a cell-complex structure, we can deal with a wider class of statistical models. We think
that this more general notion of duality can be fruitful in the study of disordered systems. This
notion of duality is motivated, in fact, by the clauses-variables duality that we observed in a
previous investigation into the zero-temperature behaviour of a model of random satisfiability
[13], which has the structure of a disordered diluted interaction.

The paper is organized as follows. In section 2 we introduce some mathematical
formalism, in particular about the notion of duality and Fourier transform for generic Abelian
groups. In sections 3 to 8 we discuss our duality under general aspects: in section 3 we
describe the most general setting for the duality; in section 4 we specialize the model of a
formulation which is manifestly suitable for statistical-mechanics models, and in section 5 we
rederive the duality in this frame; in section 6 we show how to reconduct an extension of the
original definition to the primitive formulation of the problem, which is reminiscent of a set
of gauge fields coupled with the interaction terms; in section 7 we describe a particular extra
feature appearing in the model when delta constraints appear; finally in section 8 we introduce
a sufficient criterion for self-duality.

In sections 9 to 13 we show the application of these general ideas to some concrete
physical examples: first, in sections 9 and 10, a sort of random Gaussian model and a variant
with random constraints; further, in sections 11 and 12, a generalization of the Potts model
extended to random structures of interactions and a discussion on how to recover, within
our framework, the traditional results for regular lattices; finally, in section 13, we discuss a
concrete example of the general setting of section 6, which is reminiscent of a scalar field
theory coupled with electromagnetism, both in the case of regular lattices and of disordered
systems.

In section 14 we outline some conclusions, and introduce the perspective for a further
generalization of the procedure, using different mathematical structures instead of an Abelian
group structure and the Fourier transform.

2. Dual for an Abelian group, Fourier transform and group homomorphisms

In this section we introduce the Fourier transform for locally compact Abelian groups, by
means of the theory of characters (see for example [14]).

First, we introduce the concept of dual group. Let G be a locally compact Abelian
group (we always write our Abelian groups additively). Let RG be the set of irreducible
representations of G. It is well known that the irreducible representations of G are all one-
dimensional: thus, for each ρ ∈ RG, the representation matrix Uρ(g), is one-dimensional
and coincides with the character χρ(g). The set RG is itself an Abelian group under ordinary
composition (multiplication); we write this group additively and call it the dual group Ĝ.

We label the elements of the original group G by Latin letters g, h, . . . , and elements of
the dual group Ĝ by Greek letters ρ, τ, . . . . If we adopt the notation

χρ(g) = Uρ(g) = eiϑG(ρ,g) (1)

the following bilinear relations hold:

ϑG(ρ + τ, g) = ϑG(ρ, g) + ϑG(τ, g) (2a)

ϑG(ρ, g + h) = ϑG(ρ, g) + ϑG(ρ, h). (2b)

The dual group of Ĝ, denoted by ̂̂G, is naturally isomorphic to G.
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In a consistent choice of notation, the characters of the dual group are derivable from the
antisymmetric relation

ϑG(ρ, g) = −ϑĜ(g, ρ) (3)

which is equivalent to

χg(ρ) = χρ(g). (4)

Given a complex-valued function f on G, its Fourier transform f̂ is a function on the dual
group Ĝ, defined by

f : G → C f (g) =
∫ ∗

ρ

eiϑĜ(g,ρ)f̂ (ρ) (5a)

f̂ : Ĝ → C f̂ (ρ) =
∫

g

eiϑG(ρ,g)f (g). (5b)

Notation
∫
g

and
∫ ∗
ρ

stand for a properly normalized Haar measure on G and Ĝ. This allows us
to introduce a notion of invariant δ-function compatible with the measure introduced above:∫ ∗

ρ

χρ(g′)χρ(g) = δG(g′ − g)

∫
g

χρ ′(g)χρ(g) = δĜ(ρ ′ − ρ)

which have the natural property∫
g

f (g)δG(g′ − g) = f (g′)
∫ ∗

ρ

f̂ (ρ)δĜ(ρ ′ − ρ) = f̂ (ρ ′).

Subscripts G and Ĝ will be omitted when there is no confusion.
Also a convolution operation can be introduced in this general context. Indeed, define the

convolution product as

(f1 ∗ f2) (g) =
∫

g′
f1(g

′)f2(g − g′) (6)

(f̂ 1 ∗ f̂ 2)(ρ) =
∫ ∗

ρ ′
f̂ 1(ρ

′)f̂ 2(ρ − ρ ′) (7)

then the property

(f̂ 1 ∗ f̂ 2)(ρ) = f̂1f2(ρ) (8)

follows3.
The most general Abelian group with the properties of being locally compact and

compactly generated (which are natural properties when describing physical variables) is

3 Consider the following algebra, in which linearity property (2) and the δ-function definition are used:(
f̂ 1 ∗ f̂ 2

)
(ρ) =

∫ ∗

ρ′
f̂ 1(ρ

′)f̂ 2(ρ − ρ′) =
∫ ∗

ρ′

∫
g1

∫
g2

f1(g1)f2(g2) ei(ϑ(ρ′,g1)+ϑ(ρ−ρ′,g2))

=
∫ ∗

ρ′

∫
g1

∫
g2

f1(g1)f2(g2) ei(ϑ(ρ′,g1−g2)+ϑ(ρ,g2)) =
∫

g1

∫
g2

f1(g1)f2(g2) eiϑ(ρ,g2)δ(g1 − g2)

=
∫

g

f1(g)f2(g) eiϑ(ρ,g) = f̂1f2(ρ).
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Table 1. Convention for the normalization of the Haar measure adopted in this paper for various
pairs (G, Ĝ) of Abelian groups. It is understood that for the direct product of groups the Haar
measure is simply the product measure of the original ones.

(Zq ; Zq ) (U(1); Z) (R; R)∫
g

: 1
q

∑q−1
x=0

∫ 2π

0
dθ
2π

∫∞
−∞ dx∫ ∗

ρ
:

∑q−1
ξ=0

∑+∞
n=−∞

∫∞
−∞ dξ

ϑ(g, ρ) : 2πxξ/q θn 2πxξ

δG(g) : qδKr(x) 2πδDirac(θ) δDirac(x)

δĜ(ρ) : δKr(ξ) δKr(n) δDirac(ξ)

the product of R, U(1), Z and Zq groups4, so the suggested choice of normalizations of
table 1 covers all the possible situations.

A homomorphism ϕ from an Abelian group G1 to another Abelian group G2 is a map
which preserves the group operation ϕ(x +G1 x ′) = ϕ(x) +G2 ϕ(x ′), and maps the identity to
the identity, ϕ(0) = 0. We denote by Hom(G1,G2) the set of all homomorphisms from G1 to
G2. Note that a homomorphism must preserve additive inverses, i.e. ϕ(−g) = −ϕ(g). This
follows from ϕ(0) = ϕ(g) + ϕ(−g) = 0.

As we have seen in the previous paragraphs, from the theory of characters we can
introduce the dual groups Ĝ1 and Ĝ2. It is indeed possible to introduce the notion of dual
homomorphism5, ϕT ∈ Hom(Ĝ2, Ĝ1), which completes the diagram

G1
�� D ��������

ϕ

��

Ĝ1

G2
�� D �������� Ĝ2

ϕT

��
.

The dual homomorphism ϕT acts according to the formula

χρ(ϕ(g)) = χg(ϕ
T (ρ)) = χϕT (ρ)(g) g ∈ G1 ρ ∈ Ĝ2 (9)

from which we derive

ϑG2(ϕ(x), y) = ϑG1(ϕ
T (y), x). (10)

It is easy to verify that ϕT is a homomorphism from Ĝ2 to Ĝ1, as a consequence of the fact
that ϑ(ρ, g) is a bilinear form (2)

χϕT (ρ1+ρ2)(g) = χρ1+ρ2(ϕ(g)) = χρ1(ϕ(g)) · χρ2(ϕ(g))

= χϕT (ρ1)(g) · χϕT (ρ2)(g) = χϕT (ρ1)+ϕT (ρ2)(g). (11)

4 This fact is derived essentially from the three general results [15]:

• Every locally compact, compactly generated Abelian group G is topologically isomorphic with Ra × Zb × K

for some non-negative integers a and b and some compact Abelian group K.
• Let K be a compact Abelian group and let U be a neighbourhood of the identity in K. There is a closed subgroup

H of G such that H ⊂ U and K/H is topologically isomorphic with U(1)c × F , where c is a non-negative
integer and F is a finite Abelian group.

• Let F be a finite Abelian group. Then it is isomorphic to the group direct product of cyclic groups of prime
power order (Kronecker decomposition theorem).

5 For example cf Kirillov [14], Part III, statement 631.
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3. The general formulation of the duality

In this section we wish to introduce a notion of duality for a wide class of systems in classical
statistical mechanics.

In the most general form, given two Abelian groups G1 and G2, we will consider the
system defined by

• a function F1 : G1 → C;
• a function F̂ 2 : Ĝ2 → C;
• a homomorphism ϕ ∈ Hom(G1, Ĝ2);

and the Gibbs weight of a state x ∈ G1 is given by

exp
[−HF1,F̂ 2;ϕ(x)

] = F1(x)F̂ 2(ϕ(x)). (12)

The partition function is defined as

ZF1,F̂ 2;ϕ =
∫

x

F1(x)F̂ 2(ϕ(x)). (13)

Applying Fourier transform to the function F̂ 2 we obtain an algebraic relation∫
x

F1(x)F̂ 2(ϕ(x)) =
∫

x

∫
y

F1(x)F2(y) eiϑG2 (ϕ(x),y)

=
∫

y

∫
x

F2(y)F1(x) eiϑG1 (ϕT (y),x) =
∫

y

F2(y)F̂ 1(ϕ
T (y))

from which we deduce that

ZF1,F̂ 2;ϕ = ZF2,F̂ 1;ϕT . (14)

Note that in the dual model the roles of the groups G1 and G2 are interchanged, and the
homomorphism ϕ ∈ Hom(G1, Ĝ2) is replaced by ϕT ∈ Hom(G2, Ĝ1).

4. Definition of a model with many degrees of freedom

In this section we specialize the procedure described above to a more physical frame, in which
extensive parameters appear both in the choice of the groups G1 and Ĝ2 and of the functions
F1 and F̂ 2.

We introduce two such parameters: the first one, r, is called the number of variables,
while the second one, (n− r), is the number of interactions (they were called clauses in [13]).

Given a group G, we adopt G1 = G⊗r and Ĝ2 = G⊗(n−r). A state in G1 is specified by
a vector x = (x1, . . . , xr ), and the homomorphism ϕ is specified by a r × (n − r) matrix J ,
with elements Jik ∈ Hom(G,G) acting on the left, such that (xJ )k means

∑r
i=1 Jik(xi). By

convention we let the indices k run from r + 1 to n.
The functions F1 and F̂ 2 will be chosen to be factorized on the entries of the vectors:

F1[x] =
r∏

i=1

fi(xi) F̂ 2[y] =
n∏

k=r+1

fk(yk). (15)

The weight functions f1, . . . , fr are thus ‘one-body terms’ (generalized magnetic fields), while
fr+1, . . . , fn are ‘interaction terms’.
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Note that we have chosen the groups G1 and Ĝ2 to be direct products of the same group
G. To avoid confusion in the application of the conventions of table 1, we specify that∫

[x]∈G1

≡
∫

x1

· · ·
∫

xr

ϑG1(x
′, x) =

∑
i

ϑG(x ′
i , xi)∫ ∗

[y]∈G2

≡
∫ ∗

yr+1

· · ·
∫ ∗

yn

ϑG2(y
′, y) = −

∑
k

ϑG(yk, y
′
k).

In this frame, we can develop a physical intuition on the structure of our model. We could
consider the r entries of the vector x as the variables of a statistical-mechanics system. The
first r functions fi(xi) collect the one-body contributions to the Gibbs factor, like one-body
measure terms, or magnetic fields, or chemical potentials. The last (n−r) functions fk((xJ )k)

act like (n − r) terms of interaction, encoding information like the strength of the couplings,
or the nature of the clauses, etc.

The matrix J describes how the variables interact. As an example take the entries of J

in a commutative ring with unit, R, and G an R-module. A particular case occurs when G is
an arbitrary Abelian group and R = Z. In fact, every additive group is an R-module with Z,
where n · · · g = g + · · · + g (n times). As an example consider a scalar field theory in which
the r variables φi take a real value for each site i of the lattice, and the interaction terms depend
on (φi − φj )

2, where (i, j) is a bond of the lattice. Another example is a gauge Potts model,
in which the r variables si take a value in Zq for each bond i of the lattice, and the interaction
terms depend on the linear combinations

∑
i∈∂p si , where p is a plaquette of the lattice. In fact

in both these models all the coefficients of J are in {0,±1}. In the first case, the entry Jij

is nonzero when the site labelled by i is an extremum of the edge labelled by j , while in the
second case this happens when the edge labelled by i is on the border of the plaquette labelled
by j , and the sign is determined by the choice of orientation for edges and plaquettes.

As a second example take the entries of J in a field F, and G a finite-dimensional vector
space over F (say, Fl). The field F could be, for example, the real field R, the complex field
C, or a finite field GF(qk).

Moreover, we stress the fact that the generality of our formulation does not require any
underlying geometrical structure for the system, and also applies to situations typical of
disordered mean-field models, in which such a structure does not exist.

Denote with 1 the identity homomorphism ϕI ∈ Hom(G,G), such that ϕI (x) = x for
any x, and with 0 the null homomorphism ϕ0 ∈ Hom(G,G), such that ϕ0(x) = 0 for any x.
We can introduce an r × n matrix B defined as

Bij =


1 i = j 1 � j � r

0 i 	= j 1 � j � r

Jij r + 1 � j � n

(16)

i.e. in short notation

B = [Ir |J ]. (17)

This allows us to use a unique label for the two functions F1[x] and F̂ 2[xJ ], defining
F [xB] = F1[x]F̂ 2[xJ ] = ∏n

j=1 fj ((xB)j ).
The invariance of the partition function under change of variables in the integration

corresponds in terms of the matrix B to the application of a special orthogonal transformation
from the left (change of basis)

Z[B] =
∫

Gr

F [xB] Z[B] = Z[OB] ∀O ∈ SO(r). (18)
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The result is that, beyond the particular choice of the matrix B, a more fundamental notion of
‘pattern of interaction’ can be established, which is independent of the choice of basis. This
is the analogous of what happens in linear algebra, where the notion of linear independence is
intrinsic with respect to the choice of basis. The introduction of this concept in mathematics
dates up to the paper of Whitney [16], and is the foundation of a theory called matroid
theory (cf [17] for a textbook). In particular, matroid is the name given to the intrinsic
mathematical structure corresponding to our pattern of interaction, and a choice for the
matrix B is called a vectorial representation for the matroid. In the case in which the first r × r

block of the matrix is the identity, we say that B is a standard vectorial representation for the
matroid. Note that the definition of our model puts B automatically in standard vectorial form.

5. Duality for product groups

Let us now repeat the procedure of the previous section specialized to our case, and write the
corresponding duality transformation. The Boltzmann weight is

exp(−HG;f ;B(x)) =
n∏

j=1

fj ((xB)j ). (19)

The partition function is

ZG;f ;B =
∫

[x]
exp(−HG;f ;B(x)) (20)

which, applying Fourier transform, can be restated as

ZG;f ;B =
∫

[x]

r∏
i=1

fi(xi)

n∏
k=r+1

fk((xJ )k) =
∫

[x]

∫ ∗

[y]
eiϑG2 (xJ,y)

r∏
i=1

fi(xi)

n∏
k=r+1

f̂ k(yk)

=
∫ ∗

[y]

∫
[x]

eiϑG1 (−yJ T ,x)

n∏
k=r+1

f̂ k(yk)

r∏
i=1

fi(xi)

=
∫ ∗

[y]

n∏
k=r+1

f̂ k(yk)

r∏
i=1

f̂ i((−yJ T )i)

from which we deduce that

ZG;f ;B = ZĜ;f̂ ;B̂ (21)

where the dual B̂ of the matrix B is understood exactly as in matroid theory (see [17],
chapter 2).

B = [Ir |J ] B̂ = [−J T |In−r ]. (22)

In the most general case of Jij ∈ Hom(G,G), the quantities (J T )ji are the dual
homomorphisms Ĵ ij defined according to (9).

The duality interchanges the role of variables and interactions. Furthermore, if the
functions fj are almost constant (low coupling, or high temperature), the functions f̂ j are
very peaked (high coupling, or low temperature), so the duality relates a regime of high (resp.
low) temperature in the one-body terms with a regime of low (resp. high) temperature in the
interaction terms, and vice versa.

The analogous Kadanoff–Ceva procedure [12], referred to in the introduction, which
relates the expectation values of physical operator pairs as a consequence of duality, can also
be repeated in this general case, although a little care is required.
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Consider a local operator

A(x) = Ai1

(
xi1

) · · ·Ail

(
xil

) · Ak1

(
(xJ )k1

) · · · Akm

(
(xJ )km

)
(23)

whose expectation value can be expressed as the ratio of two partition functions, the numerator
corresponding to a properly modified system

〈A〉G;f ;B = ZG;f (A);B
ZG;f ;B

f
(A)
j (z) :=

{
fj (z)Aj (z) j ∈ {i1, . . . , il, k1, . . . , km}
fj (z) otherwise.

(24)

This expectation value coincides with the expectation value of a related operator in the dual
system. The proper choice is not the naive one Â, but a certain A∗ defined as

A∗
j (ξ) := (f̂ j ∗ Âj )(ξ)

f̂ j (ξ)
j ∈ {i1, . . . , il, k1, . . . , km} (25)

for which we have the relation

ZG;f (A);B = ZĜ;f̂ (A∗);B̂ ⇒ 〈A〉G;f ;B = 〈A∗〉Ĝ;f̂ ;B̂ . (26)

Note that local operators acting on variables are mapped into local operators acting on
interactions, and vice versa.

6. The coupling with gauge fields

In this section we slightly generalize the formulation of the problem introduced in sections 3
and 4, and then we show that, with a change of variables, it can be recast in the original
framework.

This analysis has one main reason: in section 13 we will describe the physical examples
both of a scalar field theory, and of a discretized free electrodynamic theory, and show that
our duality holds for both systems. Then we show that the duality also holds for the system in
which the electrodynamics is coupled with the scalar field in the traditional gauge-covariant
way.

We want to show that this is a particular case of a general recipe, introduced in this section,
and valid for the cases in which we introduce a set of gauge fields coupled with the terms of
interaction. The change of variables corresponds to converting the basis of scalar fields and
gauge fields into the basis of fields and covariant derivatives.

Given 2k Abelian groups G1, . . . ,Gk,G
′
1, . . . ,G

′
k , we will consider the system defined

by

• k functions fi from the group Gi to the field C;
• k functions ĝi from the group Ĝ′

i to the field C;
• 2k − 1 homomorphisms ϕi between the groups Gi and Ĝ′

i :

Gk

ϕ−k+1 �� . . . ϕ−1 �� G1
ϕ0 �� Ĝ′

1

ϕ1 �� . . .
ϕk−1 �� Ĝ′

k (27)

and the Gibbs weight of a state x = (x1, . . . , xk) ∈ ⊗
i Gi is

exp
[−Hf,ĝ;ϕi

(x)
] = fk(xk)

k−1∏
i=1

fi(xi − ϕ−i (xi+1))

k∏
j=1

ĝj (ϕj−1 · · ·ϕ0(x1)). (28)

Consider the change of variables yi = xi − ϕ−i (xi+1), with Jacobian 1. If we introduce the
k × k matrix of homomorphisms

ψij = ϕ−(i−1)ϕ−(i−2) · · ·ϕj−1 (29)
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where the homomorphism ψij goes from Gi to Ĝ′
j , we could restate the Gibbs weight above

as

exp
[−Hf,ĝ;ϕi

(y)
] =

k∏
i=1

fi(yi)

k∏
j=1

ĝj

(
k∑

l=1

ψlj (yl)

)
. (30)

As a matrix of homomorphisms from the set of groups {Gi} to the set of groups {Ĝ′
j } is a

homomorphism between the product groups
⊗

i Gi and
⊗

j Ĝ′
j , we are in a position to apply

the general procedure outlined in section 3.
The dual model interchanges the groups Gi with the groups G′

i , and the functions fi with
the functions gi . As the transposed homomorphisms are given by

(ψT )ij = (ψji)
T = ϕT

i−1 · · · ϕT
−(j−1) (31)

it corresponds to interchanging the homomorphism ϕi with the transposal homomorphism
ϕT

−i . In this specialization of the general procedure, the relation (14) reads

Zf,ĝ;{ϕi } = Zg,f̂ ;{ϕT
−i }. (32)

In the case that we deal with product groups, as described in section 4, the matrix B will not
still be in the standard form representation of matroid theory when expressed in the x basis.
Nevertheless, it will be in block form with k rows and 2k columns. If we call Ji the linear
applications corresponding to the homomorphism ϕi , the block Bij is given by

Bij =


I i = j � k

−J−(k−i) i = j + 1 � k

J0J1 · · · Jj−k−1 i = k j > k

0 otherwise.

(33)

The matrix B can be easily diagonalized. This results in the change of basis from x variables
to y variables in the sense described above. The resulting matrix B ′ will have blocks B ′

ij given
by

B ′
ij =


I i = j � k

0 i 	= j j � k

J−i+1J−i+2 · · · Jj−k−1 j > k.

(34)

Now that B ′ is in the standard form representation, we can apply duality, and then, inverting
the diagonalization procedure, restate the dual problem in the original block form. The
transformation interchanges the matrices Ji with J T

−i , with a minus sign on J0, which goes
into −J T

0 .

7. The solution of delta constraints

A general feature of our duality in the factorized case is that the resolution of constraints
taking the form of delta functions has a dual counterpart in the removal of trivial constant
factors, and vice versa. This feature can be seen in a transparent way in a simple unstructured
problem, discussed in section 10, but it is more commonly used when the duality is combined
with other geometric properties of the systems, such as, for example, in the case of models
defined over regular finite-dimensional cell-complexes. Such a situation will be described in
section 12.

Consider a system with r variables and n − r interactions, in the standard form described
above, in the case in which the first r functions fi(x) are constant. For simplicity, say that
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the last (n − r) functions fk(y) are all equal to a certain f (y). The model is described by the
Gibbs weight

exp[−H(x)] =
n∏

j=r+1

f ((xJ )j ). (35)

Following the duality procedure, the dual Gibbs weight is given by

exp[−Ĥ(ξ)] =
r∏

i=1

δ((−ξJ T )i)

n∏
j=r+1

f̂ (ξj ). (36)

In the following, assume for simplicity that the incidence matrix J has maximal rank6. In this
case it can be written in standard form J = (I, J ′) by means of a change of variables, and a
relabelling of the last (n − r) indices. So we can rewrite the Gibbs weights above as

exp[−H(x)] =
2r∏

j=r+1

f (xj )

n∏
j=2r+1

f ((xJ ′)j ) (37)

exp[−Ĥ(ξ)] =
r∏

i=1

δ
(−ξ

dep
i − (ξ indJ ′T )i

) 2r∏
j=r+1

f̂
(
ξ

dep
j

) n∏
j=2r+1

f̂
(
ξ ind
j

)
(38)

where in the last expression we already stressed that the variables ξ ind form an independent set,
while the variables ξ dep can be expressed in terms of them when solving the delta constraints.
In this case we obtain

exp[−Ĥ(ξ)] =
2r∏

j=r+1

f̂ ((−ξ indJ ′T )j )

n∏
j=2r+1

f̂
(
ξ ind
j

)
. (39)

This is exactly the Gibbs weight obtained by applying duality directly to the weight in (37),
considered as a system with r variables, labelled with the indices from r + 1 to 2r , and n − 2r

interactions, labelled with the indices from 2r + 1 to n.
In conclusion, we draw a scheme which summarizes the procedure described above:[

I, I, J
]

1 f

remove constant factors−−−−−−−−−−−−−−−→
[

I, J
]

f
��

Duality

��

��

Duality

��[
−I
−JT ,

I 0
0 I

]
δ f̂

solve the δ−−−−−−−→
[
−JT , I

]
.

f̂

8. A sufficient condition for self-duality

Duality is particularly useful whenever it is possible to recover that a system, under suitable
conditions, is self-dual.

6 Matrices of non-maximal rank r ′ < r would only imply trivial overall factors of the kind |F|(r−r ′), or the necessity
of fixing ‘by hand’ (r − r ′) variables, as for example in the planar Potts model, where a factor q originates from this
fact, or in the XY-model–Coulomb gas relation, in which we should avoid summing over the variable associated with
one special site, in order to fix a ‘ground’ for the potential.
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In the following, let us denote by X the instance of a problem (say, the lattice, the set of
couplings, . . .), and by σ a configuration of the system (say, the values of all the spins in the
system).

Duality means that there is an involution {X} ι−→ {X} such that

Z[ιX] = Z[X]eC (40)

with C an extensive quantity depending in an analytic way on the thermodynamic parameters
of the system.

Of course a sufficient condition for an instance X∗ to be self-dual is that it is a fixed point
of the involution

ιX∗ = X∗. (41)

If there is a group of invariances U for the partition function, i.e. Z[uX] = Z[X] for all u ∈ U ,
then a weaker condition for self-duality can be stated. It is sufficient that some u ∈ U exists
such that

uιX∗ = X∗. (42)

In the context of disordered systems the variable X describing the instance is itself a random
variable, distributed over some space {X} with some normalized measure µ(X) given a priori.
The action of duality on the space of instances {X} naturally induces an action on the space of
normalized measures over {X}

µι(X) =
∣∣∣∂ιX

∂X

∣∣∣−1
µ(X). (43)

The condition for self-duality now applies to measures. The trivial condition for a measure
µ∗(X) to define a self-dual problem is

µ∗
ι (X) = µ∗(X). (44)

If there is a group U of invariances for the problem, a weaker condition can be stated on central
projections: ∫

U
µ∗

ι (uX) =
∫
U

µ∗(uX) (45)

with
∫
U a normalized Haar measure on the group.

In the case of a disordered system in our general form, we have a measure on the space of
n-tuples of functions {fi} and of r × (n − r) incidence matrices J . For r = n/2, all the first
r functions fi equal to a certain f (x) and all the last r functions fk equal to Fourier transform
f̂ (x), the dual set of functions coincides with the original one, and self-duality needs to be
checked only on the measure µ(J ) for the incidence matrix J .

Call A ⊆ Aut(G) the set of automorphisms for the functions f (x) and f̂ (x), then a
generic element u of the group of invariance U for the model is of the form u = (π; {aj }) with
π ∈ S{1,...,r} × S{r+1,...,n},7 and aj ∈ A, with j = 1, . . . , n. The action of u on a matrix J is

(uJ )ik = aiJπ(i)π(k)a
−1
k i ∈ 1, . . . , r k ∈ r + 1, . . . , n (46)

and group composition is given by

u′u = (π ′π; {a′
j aπ ′(j)}). (47)

The condition for self-duality (45) above is verified under many sufficiency hypotheses. For
example, if both f (x) and f̂ (x) are even, (−1) ∈ A and central projection is sign-invariant,(∫

U f (uJ ) = ∫
U f (u(−J ))

)
. In this case a sufficient condition is µ(J ) = µ(J T ), which is

verified in many natural ensembles, e.g., when the entries Jij are i.i.d., or when J describes
the adjacency over a random bipartite graph, with balanced distributions of coordinations over
the vertices of the two kinds.
7 S� denotes the permutation group on the set �.
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9. An easy example: the Gaussian model

As a first easy application of formula (21) we will consider a simple model exactly solvable
via Gaussian integration. Consider the system described by equation (19), specialized to the
case in which G = R and the functions {fj } are

fi(x) = e−x2/2σ 2
i for i = 1, . . . , r (48a)

fr+k(x) = e−x2/2ρ2
k for k = 1, . . . , n − r. (48b)

We will introduce an ad hoc notation to label the partition function of this system

ZGauss(J ; {σi}, {ρk}) ≡ ZR,B,{fj } (49)

where expressions (48) above for the {fj } and the vectorial representation B = [Ir |J ] are
understood.

We could rewrite equation (19) in the more familiar form

exp(−HG;f ;B(x)) =
n∏

j=1

fj ((xB)j ) = e− 1
2 xT (S−2+J T R−2J )x (50)

where Sii ′ = σiδii ′ and Rkk′ = ρkδkk′ . Using the convention of table 1 for the measure
∫
x

in
the case X = R (that is, writing down the proper number of (2π) factors), and applying the
formula for Gaussian integration, we have for the partition function

ZGauss(J ; {σi}, {ρk}) =
∫

dx e− 1
2 xT (S−2+J T R−2J )x = (2π)

r
2 det S√

det(Ir + MT M)
(51)

where we defined

M = R−1JS. (52)

From equation (21) we have that the dual partition function is

ZGauss
(−J T ; {ρ−1

k

}
,
{
σ−1

i

}) = (2π)
n−r

2 det R−1

(2π)
r
2 det S

ZGauss(J ; {σi}, {ρk}) (53)

while, applying the formula for Gaussian integration on the dual formulation,

ZGauss(−J T ; {ρ−1
k }, {σ−1

i }) =
∫

dη e− 1
2 ηT (R2+J T S2J )η = (2π)

n−r
2 det R−1√

det(In−r + MMT )
. (54)

So the consequences of the duality can be restated in the algebraic equation

det(Ir + MT M) = det(In−r + MMT ) (55)

which is indeed true, although not totally trivial8.

8 Consider the formal power series in z:

ln(det(I − zMT M)) = tr(ln(I − zMT M)) = −
+∞∑
n=1

zn

n
tr(MT M)n

= −
+∞∑
n=1

zn

n
tr(MMT )n = tr(ln(I − zMMT )) = ln(det(I − zMMT )).
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10. A randomly constrained Gaussian model

In this section we introduce a model in which some Gaussian distributed variables in RD are
subjected to a set of random constraints.

This model is a first example in which the matrix of the homomorphisms J really contains
non-trivial group homomorphisms. Furthermore, it exhibits in a clear way the general feature
described in section 7: the resolution of delta constraints has a dual counterpart in the removal
of trivial constant factors.

The model is defined as follows. Let xi, i = 1, . . . , r , be D-dimensional real vectors
(greek indices α, β, . . . run over the D internal coordinates), and introduce the (n − r) linear
combinations

yα
k =

r∑
i=1

D∑
β=1

x
β

i J
βα

ik (56)

with k = r + 1, . . . , n defined by the matrices Jik .
The Gibbs weight of a configuration is

dx exp[−HJ (x)] = dDx1 · · · dDxre− 1
2σ2

∑r
i=1 |xi |2

n∏
k=r+1

δ(yk, 0). (57)

We consider the random model in which we have a probability measure over instances Jik .
Denote by dµD the Haar measure over the group of special orthogonal transformations SO(D).
A possible choice is to take the variables Jik as i.i.d. variables, distributed with dµD , i.e.
decorrelated random rotations

dµ(J ) =
r∏

i=1

n∏
k=r+1

dµD(Jik). (58)

The problem has a large group of invariances. In the case 2r > n, this allows us to reconduct
the matrix J in a standard vectorial form. Three classes of manipulations on J , all unitary
Jacobian, do not modify the value of the partition function:

• permutations of the columns:

Jik −→ Jiσ(k) σ ∈ Sn−r

• orthogonal transformations on the rows:

Jik −→ CijJjk C ∈ SO(r)

• global rotations on internal space RD:

J
βα

ik −→ R
ββ ′
(i) J

β ′α′
ik Rαα′

(k) R(j) ∈ SO(D) 1 � j � n.

As with probability 1 on our measure, rank(J ) = min(r, n−r) = n−r , using these operations
we can put the matrix J in the form

J ′ =
(

Y

−In−r

)
.

This procedure of diagonalization corresponds to the algebraic resolution of the delta functions.
In fact, the linear combinations (56) are

(y ′)αk =
r∑

i=1

D∑
β=1

x
β

i (J ′)βα

ik =
2r−n∑
i=1

D∑
β=1

x
β

i Y
βα

ik − xα
k−(n−r). (59)
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Relabelling

wk = xk+2n−r k = 1, . . . , n − r (60)

we can write

wα
k (x, Y ) =

2r−n∑
i=1

x
β

i Y
βα

ik k = 1, . . . , n − r. (61)

Define the transposal matrix of homomorphisms YT as (Y T )
αβ

ki = Y
βα

ik . The Gibbs weight
(57) can be rewritten as

exp[−HJ (x)] = exp

− 1

2σ 2

 ∑
i�2r−n

|xi |2 +
∑

k�n−r

|wk(x, Y )|2


= exp

− 1

2σ 2

∑
i�2r−n

xα
i (I + YY T )

αβ

ij x
β

j

 (62)

which is of the form of the Gaussian model of section 9 (equation (50)), with 2r −n variables,
n − r constraints, and all the σi and the ρk equal to σ . The measure of integration dx stands
for dDx1 · · · dDx2r−n. With a slight abuse of notation, we can write the partition function of
this model as

ZGauss(Y, σ ) =
∫

dx e− 1
2σ2 xT (Ir +YYT )x (63)

and, applying the duality transformation to this formulation of the problem, obtain

ZGauss(Y, σ ) = (2π/σ)
n
2

(2π)n−r
ZGauss(−Y T , σ−1). (64)

We could also apply the duality transformation directly to the original formulation. In this
case we have r variables x1, . . . , xr , with one-body functions fi(xi) = e−x2

i /(2σ 2) and (n − r)

interactions, encoded in the delta functions gk(yk) = δ(yk, 0).
The dual problem has (n − r) variables η1, . . . , ηn−r , with constant one-body functions

ĝk(ηk) = δ̂(ηk) = 1/(2π), and r interactions given by

f̂ i(ξi) =
√

2π

σ
exp

(
−σ 2ξ 2

i

2

)
ξ

β

i =
n∑

k=r+1

D∑
α=1

ηα
k (−J T )

αβ

ki .

The definition of the transposal matrix is (−J T )
αβ

ki = −J
βα

ik . At this point, we can remove
the trivial constant one-body terms. Then we can diagonalize the matrix −J T using the
‘transposal’ of the procedure described above for J (that is, moves on rows and columns are
replaced by the corresponding moves on columns and rows). The partition function obtained
in this way coincides with the right-hand side of (64).

In this case in which the entries of matrix J are non-trivial homomorphisms, we can check
directly that, according with the general recipe of section 5, the entries Ĵ ki of the dual matroid
are related to the homomorphism-transposal of the entries Jik (in this case, the internal indices
α and β are exchanged). Moreover, in agreement with the general description of section 7,
we see how the resolution of delta constraints and the removal of constant factors are dual
procedures.
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11. A generalized Potts-like model

In this section we study the effects of the duality on a particular model which slightly
generalizes the one we introduced in [13]. We deal with r variables xi ∈ {0, . . . , q − 1}
and a general Hamiltonian with (n − r) Potts-like interaction terms provided by a matrix J

−H(x; J, {Kk}, {hi}) =
n−r∑
k=1

Kkδ

(∑
i

xiJik

)
+

r∑
i=1

hiδ(xi) (65)

where the linear combinations in xJ and the delta functions are intended on Zq , that is
x ≡ x + nq. The weights of the terms in the Hamiltonian are more conveniently expressed in
terms of a vector v ∈ Rn, defined as

vi(x) = ehi − 1 for i = 1, . . . , r

vr+k(x) = eKk − 1 for k = 1, . . . , n − r

and of the functions

fj (x) = 1 + vj δ(x). (66)

If we introduce the matroid B = (Ir |J ), we can give the problem in the general
form (19):

exp
(−HZq ,B,{fj }(x)

) =
n∏

j=1

[1 + vj δ((xB)j )]. (67)

We will also introduce an ad hoc notation for the partition function of this system:

ZPotts(J ; {vj }) ≡ ZZq ,B,{fj } (68)

where expressions (66) above for the {fj } are understood.
From the form of the Fourier transform of f (x) = 1 + vδ(x)

f̂ (ξ) = v

q

(
1 +

q

v
δ(ξ)

)
(69)

and with the convention of table 1 for the measure
∫
x

in the case X = Zq , we have the
following relation between the partition functions:

ZPotts(−J T ; {q/vj }) =
∏r

i=1 vi∏n−r
k=1 q/vr+k

ZPotts(J ; {vj }). (70)

Let us specialize the general duality transformation we have obtained in some simple cases
related to the model that we introduced in [13]. First of all, we will consider the case in which
the magnetic field is constant (vj = v for all j = 1, . . . , r) and all the couplings are equal
(vj = w for all j = r + 1, . . . , n). Equation (70) in this case gives

ZPotts(−J T ; q/w, q/v) = vr

(q/w)n−r
ZPotts(J ; v,w). (71)

We can give a simple mathematical interpretation to the limit v → 0, w → ∞ of the above
formula. In the two dual models, the partition functions, properly regularized, just count the
number of solutions of the linear equations xJ = 0 and y(−J T ) = 0. In this limit case the
duality relation states that the rank of the matrix J is equal to the rank of −J T , which is a
trivial fact of elementary geometry. This model is exactly solvable for the ensemble of random
matrices on a finite field, that is we know the exact probability distribution for the free energy
and other physical quantities, and the duality relation indeed plays a role in the solution of the
problem [13].
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A particular case of (71) is when only v → ∞ (and then w′ → 0) where again the
partition functions should be properly regularized. The explicit expression is∑

x

δ(Jx)(1 + w)−
∑

i (1−δ(xi )) =
∑

η

∏
k

[
w

q
+ δ((−J T y)k)

]
(72)

therefore, the duality relates a sum, restricted to the set of solutions of a linear system Jx = 0,
where the difficulty of the problem lies in the external field contribution, to a sum, with no
external field, on all the states of the spectrum, where the difficulty lies in the non-trivial
correlations between the degeneracy of the energy levels. A quantitative study of this system
will be done in a forthcoming paper [18].

We can use the general strategy of section 8 to investigate some sufficient conditions on
the measure µ0(J ) for equation (71) to relate the partition functions of the same model at
different values of the parameters v and w.

As the weight functions involved are of the form ‘delta + constant’, with no disorder
parameters, the subgroup of automorphisms A ⊆ Aut(Zq) such that for a a ∈ A we have
f (a(x)) = f (x) is isomorphic to the classical group Z∗

q .9 That is, if a is an integer coprime
with q, the corresponding automorphism on Zq acts as a(x) = ax(mod q).

The group of invariances obtained is sufficiently large that, following the strategy outlined
in section 8, the self-duality condition can be verified for almost every reasonable ensemble
of matrices. For example, this is the case for random matrices, for sparse matrices, both
with nonzero elements chosen randomly among {1, . . . , q − 1} or all equal to 1, and also for
matrices with non-trivial correlations between the entries, if the correlations are symmetric
under transposition, like the ensemble of incidence matrices of random bipartite graphs with
vertices of fixed connectivity. An exception is the traditional ensemble for the study of XOR-
SAT problems [19], which is a particular case of our model, but the matrices J are constrained
to have a fixed number of nonzero entries per row, and do not have any constraint on the
columns.

We note that, in the case of self-dual measure on the ensemble of matrices J and v = w, the
coupling fixed point occurs for v = √

q, which is indeed the critical point also for the ordinary
Potts model on a geometrically self-dual planar graph. We will show in the next section how
to recover self-duality explicitly in this case, in which other ‘geometrical’ manipulations are
required.

12. Potts model on graphs and on planar graphs

The model discussed in the previous section is a generalization of the ordinary Potts model. In
this section we will show how our duality relation can be reconstructed as the known duality
of the Potts model on planar graphs [20, 7].

Consider a connected graph �, at this stage not necessarily planar, with sites s ∈ S, bonds
b ∈ B and elementary cycles (or loops) l ∈ L. Assume that the number of sites, bonds and
loops are respectively S,B and L. If we consider the graph as embedded on an orientable
surface, the set L of the loops could be chosen to be the set of the plaquettes (‘local’ loops),
plus the set of the generators of the first homology group, that is loops which turn around its
handles. We remark that, at this point, this division is not necessary.

We will give an arbitrary orientation to the bonds and to the loops. That is, for each bond
b, sin(b) and sout(b) will be respectively the first and second extrema of the bond. Furthermore,

9 The group Z∗
q is defined as the integers in {1, . . . , q − 1} which are coprime with q; the group operation is the

product and the standard modulo q identification is understood.
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each loop l will be associated with a B-dimensional vector Jb(l), such that, having arbitrarily
chosen an orientation for the loop, Jb(l) is the number of times that the loop l runs over bond
b with the same orientation, minus the times it runs over b in the opposite orientation.

The Potts model on the graph � is defined by the set of variables σs ∈ {0, . . . , q − 1} on
the sites, and a set of interactions with coupling constants Kb on the bonds10. The Hamiltonian
is

−H Potts
Graph

(σ ;�, {Kb}) =
∑
b∈�

Kbδ
(
σsin(b) − σsout(b)

)
. (73)

If we introduce the functions

fs(x) = 1 (74a)

fb(x) = 1 + vbδ(x) vb = eKb − 1 (74b)

and the matroid B = (IS |Jsb), with J an S × B matrix defined as

Jsb =


1 s = sin(b)

−1 s = sout(b)

0 otherwise
(75)

the partition function

ZZq ,B,{fs ,fb} =
∑

σ

∏
s

fs(σs)
∏
b

fb

(∑
s

σsJsb

)
(76)

is in the general form (20).
Now we remove the useless identity functions fs(x) and make the change of variables

xb(σ ) = σsin(b) − σsout(b). (77)

The weight of each configuration σ is now just
∏

b fb(xb(σ )). Next, we want to perform the
sum of the partition function on the new variables x, instead of that on the old σ . To this
end, we need to know how many configurations σ correspond to a certain configuration x.
The answer is simple: they are exactly q if the circuitation of x on each loop is zero (that is∑

b Jb(l)xb ≡ 0 mod q),11 and zero if the circuitation is nonzero for some loop. So we have∑
σ

−→ q
∑

x

∏
l∈L

δ

(∑
b

Jb(l)xb

)
(78)

and, with the definitions

fb(x) = 1 + vbδ(x) fl(x) = δ(x) (79)

Jbl = Jb(l) B ′ = (IB |Jbl) (80)

we have again a system in the general form (20). At this point we can perform the duality
transformation. According to the general formula (21), and to the expressions for the Fourier
transforms of fb(x) and fl(x), respectively

f̂ b(ξ) = vb

q

(
1 +

q

vb

δ(ξ)

)
f̂ l(ξ ) = 1 B̂ ′ = (−Jlb|IL) (81)

10 We introduce an additive group structure Zq for the q ‘colours’ of the model, although ordinary Potts model
Hamiltonian has a Sq total permutational symmetry between the colours. We stress again the important fact that in
general the symmetry group of the model is not related to the group introduced to perform the Fourier transform.
11 More generally, for � not connected, we have a factor q for each connected component.
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the result of the transformation is a system in the original general form (76). If the matrix
−Jlb is of the same kind as Jsb, with exactly two nonzero entries per column, one equal to
+1 and the other equal to −1, we can reconstruct a dual graphical version of the original
Potts model. As shown in detail in appendix A, this always happens when the original graph
is planar. In brief, when a graph is planar, every bond appears in exactly two loops (the
plaquettes on the two sides). If we choose a uniform orientation for the loops (all clockwise
or all anticlockwise), it appears in the two loops with opposite sign. So, in this dual model,
two neighbouring plaquettes of the original graph appear to interact with the dual coupling
constant of the common bond (v′

b = q/vb). If we want to redraw a graph such that the system
has the variables on the sites and the interactions on the bonds, the desired graph is exactly
the dual graph of the original one, in the sense of cell-complexes duality.

The procedure of this section can be applied with minor modifications to obtain the
XY -model–Coulomb gas relation [21, 22], provided that the XY -model Hamiltonian is in the
Villain form. Essentially, the only difference is that the couple of dual groups is (Zq, Zq) for
the Potts model and (U(1), Z) for the XY -model–Coulomb gas relation.

13. The coupling with gauge fields

In this section we describe the application of the procedure described in section 6 to a well-
known physical situation. The abstract framework that we introduced should now assume a
more transparent meaning: that procedure mimics what happens if we introduce a new set of
gauge fields, coupled with the terms of interaction, and then a new term of the Hamiltonian
depending on the physical content of these new fields.

The paradigm of this procedure is the introduction of minimal electrodynamic interaction
in a scalar continuous field theory, with the Lagrangian

L0 =
∫

dφ[V (φ) + ∂µφ∂µφ]. (82)

The derivative operator ∂µ has to be modified into a covariant derivative operator Dµ, defined
by the action on the fields as Dµφ = ∂µφ − Aµ. Then we have to add the dynamics of the
gauge field, FµνF

µν , where the field tensor is defined as Fµν = ∂µAν − ∂νAµ. The new
Lagrangian will be

LQED =
∫

dφ dAµ

[
V (φ) + DµφDµφ +

1

4e2
FµνF

µν

]
. (83)

If we consider the statistical-mechanics model whose Hamiltonian is derived from the lattice
discretized version of this model (as is done, for example, in [23]), we replace partial derivatives
∂µφ(x) with finite difference operators (∂φ)n;µ = φn+µ̂ −φn, so that, as usual, the interactions
lie on the bonds of the lattice. The linear combinations (∂φ)n;µ are the arguments of the
interaction terms in the Gibbs factor.

The discretized gauge fields An;µ couple to the terms of interactions in such a way
that the finite differences of the fields, (∂φ)n;µ, are modified into the covariant derivative
(Dφ)n;µ = (∂φ)n;µ − An;µ.

The discretized field tensor Fn;µν = An;µ + An+µ̂;ν − An+ν̂;µ − An;ν takes the circuitation
of the vector field An;µ around each elementary plaquette (n;µν) of the lattice, and thus is a
linear combination of the entries An;µ.

The current quadrivector is given by the divergence of the electromagnetic tensor,
jn,µ = ∑

ν(Fn,µν − Fn−ν,µν), and its divergence, which is automatically zero, is given by
(∇ · j)n = ∑

µ(jn,µ − jn−µ,µ).
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Figure 1. A table which collects the most important quantities in discretized versions of QED, for
regular lattices (right), and for arbitrary graphs (left).

We can generalize this frame to an abstraction of the geometric structure of a lattice, in
which we have a set of sites {s}, a set of bonds {b}, a set of plaquettes {p} and a set of dual sites
{s ′}. In the previous case we would have for the sites {s} = {n}, for the bonds {b} = {(n, µ)},
for the plaquettes {p} = {(n, µν)} and for the dual sites {s ′} = {(n, µνρ)}.

The action of gradient and divergence operators is now performed via some adjacent
matrices. In particular we will introduce three matrices Jsb, Jbp and Jps ′ , such that, given the
two sets respectively of scalar fields φs and of gauge fields Ab, we have

(Dφ)b = φsJsb − Ab Fp = AbJbp (∇ · j)s ′ = FpJps ′ . (84)

The geometric description of these quantities, and a comparison with regular-lattice analogues
is given in figure 1.

We will be interested in the theory with the Gibbs weight

exp(−HQED(φ,A)) =
∏

s

fs(φs)
∏
b

fb((Dφ)b)
∏
p

ĝp(Fp)
∏
s ′

ĝs ′((∇ · j)s ′) (85)

with the four sets of functions given by

fs(x) = 1 fb(x) = exp

(
−1

2
x2

)
(86a)

ĝp(x) = exp

(
− 1

4e2
x2

)
ĝs ′(x) = δ(x). (86b)

In our general frame of section 4 this model corresponds to the matroid

B =
(

I −Jsb

I Jbp JbpJps ′

)
which is in the general form described in section 6. Following the procedure described therein,
we obtain for the dual matroid

B̂ =
(

I −Js ′p

I −Jpb −JpbJbs

)
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in which sites are exchanged with dual sites, bonds are exchanged with plaquettes and the
relative orientation of bonds and plaquettes is reversed (in the geometrical duality for three-
dimensional lattices, this corresponds to the fact that the orientations of bonds and dual bonds
change in such a way that the vector product changes parity).

Introducing the ad hoc notation for the partition function

ZQED(e, B) =
∫

dφs dAb exp

(
−1

2

∑
b

(Dφ)2
b − 1

4e2

∑
p

F 2
p

)∏
s ′

δ((∇ · j)s ′) (87)

with the proper normalizations of the integrals, the duality relation states that

ZQED(e, B) = (2π)
r
2

(4πe2)
n−r

2

ZQED

(
1

2e
, B̂

)
(88)

where, as always, r is the rank of B, and in our case is equal to the number of sites plus the
number of bonds, and (n − r) is the rank of B̂, and in our case is equal to the number of dual
sites plus the number of plaquettes. Again we see how duality exchanges a regime of high
coupling with a regime of low coupling.

A concrete example could be the one of a cubic three-dimensional lattice, with the ordinary
notions of sites, bonds and plaquettes, and the dual sites being the elementary cubic cells of
the lattice. The geometric duality applied to the lattice naturally exchanges sites with dual
sites and bonds with plaquettes. In this case, the presence of the delta function for the terms
of current divergence is redundant, as the constraint is automatically satisfied.

Random-system variants could involve a measure µ(B) over an ensemble of random
tessellations of the three-dimensional space, or, more generally, over an ensemble in which
adjacency matrices are not directly derived from a geometrical structure, and the condition
∇ · j = 0 really needs to be enforced via a delta function in the Gibbs weight.

In the case in which, following the recipe of section 8, we have a self-dual measure µ∗(B),
the fixed point of the involution for the electric charge e is at the value 2e2 = 1.

14. Conclusions

The notion of duality as given by Kramers and Wannier, after its original introduction in
1941, has been applied to a wide range of periodic finite-dimensional systems of statistical
mechanics. In contrast, little has been done in the direction of a systematic description of
duality for a class of models sufficiently large to include, for example, mean-field disordered
systems.

Our idea in this paper is that, in the Kramers and Wannier formulation, a sort of two-step
procedure is implicit: an algebraic duality, which exchanges variables and interactions, and
performs a Fourier transformation on the terms of the Gibbs weight, and a geometric duality,
which, exploiting the geometrical structure of the lattice, allows for a reinterpretation of the
dual system in a formulation which, in some contexts, is suitable for a direct comparison with
the original system.

In the wider context of disordered systems the second step is in general impossible.
Nonetheless, in many cases the first step is already suitable for a fruitful comparison of the
two systems related by duality.

The general recipe is the following: given some variables and some interactions, valued
on some Abelian group G, the Gibbs weight depends on the two ingredients:

• two sets of functions, weighting respectively the original variables and the auxiliary
variables corresponding to some linear combinations of the original ones (the
interactions);
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• the specific pattern of linear combinations of the variables, encoded in a matrix J of group
homomorphisms.

The dual system exchanges variable functions and interaction functions with the Fourier anti-
transform and transform of interaction functions and variable functions, and the new pattern
is given by the matrix −J T of transposed homomorphisms.

We give some concrete applications for specific simple models: a random Gaussian
model, a random Potts-like model, a random variant of discrete scalar QED, . . .. For each of
these systems, a short discussion over the duality relation is proposed, and a hint over self-
duality conditions is suggested. Actually, in the cases of interest, this discussion is a simple
specialization of a general discussion done in section 8, and analogous to the one already
presented in [13], where the duality, in its first application, was called variable-clause duality.

An unexpected connection with matroid theory has emerged in the analysis of the subject.
The a posteriori justification for this fact is that the pattern of interaction which is involved in
the definition of the Gibbs weight is intrinsic with respect to a choice of basis for the space
of configurations. Matroid theory, in simple words, describes mathematical objects which
convey basis-intrinsic information on matrix-like objects, like the pattern of linear dependence
between the columns of a matrix. Hence, it is small surprise if the matroid related to the dual
system is the matroid-dual of the matroid related to the original system.

In a forthcoming paper we will discuss a further generalization of this framework, in
which the crucial concepts of Fourier transform and of group homomorphism for Abelian
groups are generalized to different integral transform and natural notions of homomorphism,
applied to mathematical structures different from Abelian groups. A first case is the one in
which, for partially ordered sets, the natural notion of transform is the Möbius transform, and
the natural notion of homomorphisms is related to the theory of Galois connections [24].
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Appendix A. Duality for graphical matroids and planar graphs

An important subset of regular matroids12 is the set of graphical matroids. Many results exist
on the subject (cf, for example, [17], chapter 5), derived in the spirit of generality characteristic
of matroid theory. In this appendix we will show some constructive procedures which apply
to particular classes of graphical matroids, so in this sense they are less general, but also less
demanding restatements of known facts. Hopefully, they will be useful to understand how to
interpret the classical formulations of dualities for models on planar lattices inside our general
setting for duality.

A precise terminology will be introduced below. Here we summarize the main results:

Theorem 1. The ‘site-bond’ matroid Jsb and the ‘loop-bond’ matroid Jlb of a graph G are
dual matroids.

Theorem 2. The ‘site-bond’ matrix J ′
sb of a planar graph G is equal to the ‘loop-bond’ matrix

J ′
lb of the corresponding geometrical dual graph G∗, and conversely the ‘loop-bond’ matrix

of G is equal to the ‘site-bond’ matrix of G∗.

12 That is, matroids which are representable over every field.
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A.1. Matroid duality for graphical matroids

Consider a graph G, with vertices (or sites) s ∈ V and edges (or bonds) b ∈ E. We give
an arbitrary orientation to the bonds. That is, for each bond b, sin(b) and sout(b) will be
respectively the first and second extrema of the bond

• bsin(b) �� sout(b)• . (A.1)

Define a 0-form ϕ as a function from V to a field F and a 1-form ψ as a function from E to
F. The operators ∂ and ∂∗ transform 0-forms into 1-forms and vice versa with the following
definition:

∂ϕ(b) = ϕ(sin(b)) − ϕ(sout(b)) (A.2)

∂∗ψ(s) =
∑

b

ψ(b)
(
δs,sin(b) − δs,sout(b)

)
. (A.3)

Intuitively, they correspond to the discretization of the gradient operator on scalar fields and
to the divergence operator on vector fields, generalized to arbitrary lattices.

The sites are implicitly a particular case of 0-form, ϕ(s)(s
′) = δs,s ′ . The set of 0-forms

is a vector space over F, of dimension |V |. It is naturally decomposed in two vector spaces,
S and C, where 0-forms in C are constant on each of the C connected components of G
(so dim(C) = C) and 0-forms in S are obtained by quotient (so dim(S) = S = |V | − C).
Projection on S is obtained via the operator 1

2∂∗∂ .
Analogously, the set of 1-forms is a vector space B over F, of dimension B = |E|. The

bonds are a particular case of generic 1-forms, where it is understood ψ(b)(b
′) = δb,b′ , and

are a basis for the space B. We will define the loops as the 1-forms ψ such that ∂∗ψ = 0.
Elementary plaquettes are particular cases of loops: if ∂p is the border of an oriented plaquette
p,ψ(p)(b) is the characteristic function on ∂p. The set of loops is a vector space L over F, of
dimension L.

Note that S + L = B as a consequence of the Euler formula. More deeply, the vector
space B is decomposed into ∂S + L, that is, a generic 1-form ψ is uniquely decomposed into
ψ = ∂ϕ + χ , with ϕ ∈ S and χ ∈ L (Hodge decomposition).

The patterns of linear dependence of the set of bonds projected onto the vector spaces
∂S and L are matroids. They will be called respectively the site-bond and the loop-bond
matroids. Given a choice of basis for S and L, we will denote the corresponding vectorial
representations as Jsb and Jlb. That is, for a set of 0-forms {ϕs} chosen as a basis for S, the
entries of Jsb will be

Jsb = ∂ϕs(b) (A.4)

and for a set of 1-forms {ψl} chosen as a basis for L, the entries of Jlb will be

Jlb = ψl(b). (A.5)

We will give a particular skill choice of basis, for which the two matroids are both in standard
vectorial form, and manifestly dual.

Assume G is connected (the argument easily generalizes): choose a ‘ground’ site s0 ∈ V

and a spanning tree T ⊆ G, and orient the bonds such that the open path on T connecting s0

to s is oriented from s0 to s. For each site s 	= s0 there is exactly one in-going bond in E(T ).
Label this bond with bs . Say that s � s ′ iff an oriented path γs ′→s in T exists. Choose a basis
for S as

ϕs(s
′) =

{
+1 s � s ′

0 otherwise.
(A.6)
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So we have

∂ϕs(bs ′) = δs,s ′ ∂ϕs(bl) =


+1 s � sin(bl) s � sout(bl)

−1 s � sout(bl) s � sin(bl)

0 otherwise.
(A.7)

We will choose a basis for L such that for each bond b ∈ E \E(T ) there is exactly one 1-form
ψl such that ψl(b) is nonzero. So we can label the edges in E \E(T ) as bl . More precisely, the
1-form ψl corresponds to the only self-avoiding closed path on T ∪ {bl}, oriented according
to bl . Analytically this can be expressed as

ψl(bl′) = δl,l′ ψl(bs) =


−1 s � sin(bl) s � sout(bl)

+1 s � sout(bl) s � sin(bl)

0 otherwise.
(A.8)

It can immediately be checked that Jsb and Jlb are in standard vectorial form, respectively
with the identity block on the left-hand side and on the right-hand side. From the observation
that ∂ϕs(bl) = −ψl(bs) we obtain that they are dual in the matroid sense:

Jsb = (I, Ysl) Jlb = (−Y T
ls , I

)
. (A.9)

As we have found an explicit choice of basis for which the standard forms of the site-bond
matroid and of the loop-bond matroid are dual, we have implicitly proved that the matroids
are dual, which is the claim of theorem 1.

A.2. Graphical duality for planar graphs

In the previous section we have seen how the ‘abstract’ site-bond and the loop-bond matroids
for a given graph are dual in the sense of matroid duality. This is true in general, as the matroid
definition is intrinsic, and specifically we have verified it in a particular choice of basis, for
which both the matroids are in standard form.

In this section we show the result of theorem 2: that the site-bond and the loop-bond
incidence matrices for a connected planar graph and for its graphical dual are exchanged by
the graphical duality. This result relies on a particular choice of the loops as the elementary
plaquettes of the lattice, which is more natural for the case of planar graphs, but in this sense
is more accidental.

A graph G is said to be planar when it is embeddable on a genus-0 surface with no
crossings between the bonds. Consider the case in which G is connected. The classical Euler
relation for this kind of graph claims that V + F = B + 2, where V is the number of sites,
B is the number of bonds and F is the number of faces.

One can immediately define the site-bond and loop-bond incidence matrices, Asb and Alb,
for non-oriented bonds and loops. Just state that Asb is 1 if the site s is an extremum of the
bond b and 0 elsewhere, and Alb is 1 if the bond b is a side of the face l and 0 elsewhere.

The graphical dual G∗ is defined by the following procedure. Replace each plaquette l by
a dual vertex s∗ (white bullets in figure A1), each bond b by a dual (dashed) bond b∗, which
crosses it and connects the dual vertices corresponding to two neighbouring plaquettes, and
each site s with the dual plaquette l∗ delimited by the dual bonds of the bonds incident on the
site. It is clear that

As∗b∗(G∗) = Alb(G) Al∗b∗(G∗) = Asb(G). (A.10)

If we put an orientation on the bonds and a direction of rotation on the faces, the matrices Asb

and Alb will be promoted to matrices J ′
sb and J ′

lb, in which some minus signs appear. Because
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Figure A1. Graphical dual for a planar graph (left), and a consistent choice of orientations for the
bonds and directions of rotations for the faces for the relation (A.11) to hold (right).

of the planarity of the graph, we could give a recipe such that relation (A.10) is promoted to a
relation

J ′
s∗b∗(G∗) = J ′

lb(G) J ′
l∗b∗(G∗) = J ′

sb(G). (A.11)

The recipe is the following: choose the direction of rotation to be the same for all the faces,
(for example clockwise), and opposite between faces and dual faces. Choose the orientation
of the bonds arbitrarily. The orientation of the dual bonds must be such that the vector product
between each bond and its dual bond has the same sign with respect to the normal versor
outgoing from the surface.

Both the matrices J ′
sb and J ′

lb are not of maximal rank, and the only linear relation is given
by the sum of all the rows with equal coefficients. This accounts for the offset of 2 in the Euler
formula V + F = B + 2. In fact the number of ‘independent sites’ in the loop-bond matroid
(0-forms up to an arbitrary constant) is S = V − 1 and the number of independent loops is
L = F − 1, from which we recover the relation S + L = B.
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